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Using a coupled cluster form of the wave function, a variational method is 
formulated for calculation of static properties of any order. Corresponding 
to an appropriate perturbed hamiltonian H(A) including the relevant static 
property, a size consistent functional is set up. In a hierarchical fashion, 
properties of different orders may be found out using a variational method. 
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I. Introduction 

Coupled Cluster Methods (CCM) have been successful tools to obtaining electron 
correlation energies for atomic and molecular systems [1-10]. They have been 
applied extensively to the closed shell systems in particular. CCM, in its pair 
approximation known as Coupled Pair Many Electron Theory (CPMET), takes 
into account the major part of the quadruply excited contributions through the 
unlinked cluster terms of the wave function. Inclusion of single excitation vari- 
ables as well as triple and higher excitation parameters have also been made. 
Although, traditionally a nonvariational method has been applied to calculate 
correlation energies using Coupled Cluster (CC) wave function [1, 2], variational 
methods have also been envisaged in recent years [5, 6]. The attractive feature 
of CCM is that it guarantees the separability criterion for many electron systems 
[11] and consequently the desirable property of size consistency of energy is 
retained [12]. Despite the attractive physical features of CC wave function and 
the success of such an ansatz in the calculation of correlation energies, there 
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have been fewer attempts at obtaining the other electronic properties using a CC 
wave function. This note presents a variational method to calculate the first and 
second order static properties with the use of a CC wave function. 

A CC wave function ~0 for closed shells is defined as, 

= erq% (la) 

with 

T =  T, + T2 + T3 +" " , (lb) 

where each Tn operator is a n-body hole-particle excitation operator, qb 0 is a 
closed shell Hart ree-Fock (HF) determinant. The ansatz was initially proposed 
by Coester and Kummel [13-14] and later adopted by Cizek [1, 2] in the corre la t ion 
energy calculations for atomic and molecular systems. Originally Cizek calculated 
the energy and T-parameters using the nonvariational mode of solution. Sub- 
sequently, the variational methods have been applied to find the T-parameters 
as well as the energies by other authors [5, 6]. 

However, as mentioned earlier, there have been fewer developments at calculating 
the other electronic properties using CC wavefunction. One of the earlier methods 
is to calculate the expectation value (()) of  the first order static property () of 
interest for a state function which is close to the exact function. In the framework 
of a CC wave function the expectation value (O) may be given by 

(6)- (~~ er]~~ 
<~0[er+ erl~o) (2) 

The expression reduces to a sum of linked terms and was investigated by Cizek 
[2] and Fink [15]. T-parameters may be chosen to be of the values generated for 
correlation energy calculation in nonvariational CCM or variational methods. 
However, one significant method to calculate the first and second order static 
properties as well as the dynamic properties using CC wave function was 
developed by Monkhorst  [16]. Using Hel lmann-Feynmann theorem, the 
framework of CCM has been conveniently used by Monkhorst for the calculation 
of static properties. The method developed by Monkhorst is, as is traditional for 
CCM applied to correlation energy calculation, nonvariational in nature. In this 
paper we present a method where the ansatz is similar to the one proposed by 
Monkhorst,  but which is completely variational in nature. 

In Sect. 2, we briefly review Monkhorst 's approach highlighting its features. Then 
in Sect. 3 we present the method to be reported here with a brief summary in 
Sect. 4. We will restrict ourselves to the problem of determination of static 
properties here for closed shell systems. 

2. Background 

In this section a brief review of Monkhorst 's approach [16] to calculate the static 
properties using the CCM is presented. He considered a perturbed Hamiltonian 
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H(A) as, 

H(A) = H +AO. (3) 

The wavefunction O(h) is defined as 

0(A ) = e T('~)CP0. (4) 

The SchrSdinger equation for the perturbed Hamiltonian is, 

H(A) eT(X)qbo = E(A) er(X)r (5) 

utilizing the CC form of a wave function. 

A power series expansion for T(A) may be introduced i.e. 

T(A) = T + A T  (1) + A 2 T  (2) + "  �9 �9 . (6) 

Similarly, a suitable power series expansion for E(h)  may also be introduced 

E(A ) = E +hE  (I) + A 2E (2)+. �9 �9 (7) 

In the nonvariational method of solving the SchrSdinger Eq. (5), E (h) is given by, 

E(A) = @01 e-T(~')H(A) eV(X)lqbo). (8) 

It is known that for the exact state where all possible clusters are taken in defining 
T(A) (in Eq. 6) the expectation value of a first order static property (O) is given 
by 

(O) = 0E ()t)aA x=o = E ( I )  (9) 

with E(A) as defined in Eq. (8). However for the approximate function where 
only suitable clusters are included in defining ~(h) (i.e. Eq. 4), the equality (9) 
does not hold good. But assuming that the important clusters have been taken 
in the anasatz, the equality (9) is nearly strict. Monkhorst pointed out that in 
such approximate cases, E m is closer to the exact answer. Monkhorst derived 
the expression for E (l~ and the necessary additional cluster parameters T (l) for 
first order properties using a nonvariational method. Putting the power series 
expansion for T(A) in the usual nonvariational equations determining cluster 
parameters and energy, the equations as derived by Monkhorst for E (1~ and T m 
parameters are of the following form: 

E (') = @o1 e-~{6 +[H, T(')]} e~[Oo) (10a) 

(~'*1 e-T{ 6 +[H, T(')]}e=~](Po) = 0, (10b) 

qb*'s are the relevant excited states. The nonvariational mode of solution automati- 
cally leads to linked energies. T ~ parameters can be obtained from (10b) with 
T parameters substituted from the solution of usual Cizek's equation (cf. Ref. 
[1]). One can see that T (1) parameters are sufficient for the first order properties. 
T (~) can be expanded as, 

T(') = E  T2 ) ( l la )  
m 
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with 

T~ t)= ~ (p[t11[a)ava,~ (lib) 
p ,  ot 

T(2 ~1 = ~ (pqlt~la/3)apa~ar (1 lc) 
P,q 
oe,~ 

and so on. Greek letter a,/3 indicate hole orbitals, whereas as p, q, etc. indicate 
particle/virtual orbitals. (pl tit[ a), (pqJt~l a/3) are matrix elements of different ranks 
of T(~)s. Suitable rank of T's and T(l)'s have to be chosen for tests and actual 
applications. Similar equations have been derived by Monkhorst for the calcula- 
tion of second order property E (2~ 

E(2) 1 02E(A) ] 
2 ~ .~=o" (12) 

Explicit knowledge of T (2) parameters are necessary for obtaining E (2). 
Expressions similar to Eqs. (llb) and (llc) may be written for different ranks 
of T (2) operators. The solution of T (2) parameters requires in turn the knowledge 
of T ~1) parameters which can again be found from Eq. (10b) with O an appropriate 
property operator. In the next section the variational method for the determination 
of first and second order static properties with the help of CC wave function is 
presented. 

3. Variational method of determining the static properties 

As in Monkhorst's approach [16] we consider the perturbed Hamiltonian H(A) 
defined by Eq. (3). The ansatz and the pertinent expansion of T(A) parameters 
are very similar to Eqs. (4) and (6) respectively. But, instead of the nonvariational 
method, a variational prescription is followed quite in spirit to our method of 
calculating the correlation energy quoted in Ref. [6]. 

Let us consider the perturbed expectations value E(k). 

E(X) - (~'(x)IH(x)I~'(x)) (13) 
(~b(A)IH(A)) 

Although the energy functional, which is a function of the perturbation parameter 
k, is a ratio of numerator and denominator, it can be shown to be the sum of 
only linked diagrams. The arguments are very similar to the ones presented by 
us [6] and others [1, 2] in the context of cancellation of the denominator of the 
energy functional. 

Hence we obtain 

(r )IH(A )I4x(k )) 
E(A) : (4,(x)14,(x)) 

= ('l'ol e~(~§ er(~)IOOo) 

(~oI e r<~>§ er(~)lOo) 

= <COol N[e r(a)+H(h) e T(X)]lO0)Linked. (14) 
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Subscript 'Linked' denotes that only linked or connected diagrams need be 
considered. N[ ] denotes normal ordering of the operator product contained in 
the bracket. The last equality in Eq. (14) is obtained by the expansion of numerator 
and denominator using Generalised Wick's Theorem (GWT) [6]. E(A) can now 
be expanded as in Eq. (7) as a power series of A. A variational recipe is now 
prescribed for calculation of T, T (1), T (2) etc. matrix elements in spirit to the 
variational determination of T matrix elements by Euler variation of 
(~olN[eT+HeT]ldPo)~inkea followed in the first citation of Ref. 6. However, as we 
set up the equations for T, T (1~, etc. matrix elements explicitly, we will see that 
some interesting features are encountered because of the appearance of the T ~i~ 
matrix elements corresponding to different orders of the parameters Z. Equating 
different powers of ,t, E, E ~1~, E (2~, etc. can then be obtained from the various 
matrix elements. 

It may be noted that T (~), T (2~ etc. operators are of the form (l lb) ,  (11c) as 
discussed in the previous section. Eq. (14) contains contractions of various powers 
of T +, T, T (~)+, T (~, T (2)+, T (2~ etc. with f and v vertices in normal order. The 
number of variables are the number of matrix elements of the type ( p q r - - -  
[t~~ n denotes the rank of operator i.e. that the corresponding cluster 
refers to the n-body linked excitation, i denotes the operator corresponding to 
A~ in the expansion of T(A) in Eq. (6). 

As is obvious from the Eq. (14), the first order static property E ~1~ only needs 
the knowledge of matrix elements of operators upto the level of T (~). 

E (t) = (~olN[eT+(o + T(~247 + H T  (l)} e T ] [ ~ O ) L  . (15) 

L stands for qinked'. The equation determining E (~) is linear in T (~), though 
nonlinear in T-matrix elements. Similarly, E (2) involves the knowledge of T (2) 
upto the linear level, a total of quadratic power of T (1}, and, in principle, all 
possible powers of T-matrix elements. So, for the determination of higher order 
static properties a hierarchical scheme of solution must be followed. This will 
be made clear in what follows where the scheme for the solution of different T (~ 
matrix elements by variation method is discussed. 

Before discussing variational method to be envisaged in this paper, it must be 
noted that the perturbed energy functional (Eq. 14) does not terminate after finite 
powers. For simplicity we discuss the Eqs. for T and T (~) matrix elements needed 
for first order static properties. Similarly, upto a given order the equations can 
be generated to solve T (2) matrix elements needed for second order properties. 
The nature of the equations are discussed in the approximation T -  T2, T (1) - T~ 1). 
However, the operators corresponding to other linked excitations can also be 
systematically introduced. In the discussion we remain in the framework of these 
approximations only for simplicity. 

The necessary equations for calculation of first order properties are of the 
following form. 

aE(X) 
- 0  (16a) 

O{(afllt~[pq)} 
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OE(X) 
=0  (16b) 

O{(pqit2la~)} 
0E(A) 

O{( a/31 t(21)+1Pq)} = 0 (16c) 

0E(A) 
=o (16d) 3{ (pq[ t(zl )]a~ ) } 

Eqs. (16a) and (16b) are hermitian conjugates to each other. Similarly, (16c) and 
(16d) are hermitian conjugates to each other. Hence it is necessary to solve only 
Eqs. (16a) and (16c). But as may be seen, Eq. (16a) itself generates many 
equations, corresponding to various powers of h. For the specific case of calcula- 
tion of first order properties two equations - one independent of A and the other 
linear in A are relevant. In a hierarchical fashion, corresponding to higher powers 
of A, Eqs. for T (2~, T ~ etc. necessary for higher order properties may be generated. 
Similarly, Eq. (16c) would generate many equations corresponding to different 
powers of A (starting from the linear term in h). For first order properties, there 
will be two relevant Eqs. from (16c) one linear in A the other corresponding to 
quadratic terms in A. So, apparently there are more equations than the number 
of variables. If there N-number of T2 and T(z 1~ variables each, we have from 
(16a) and (16c) 4N-number of pertinent equations. However, it will be shown 
in the following that if we include in the approximation of T -  T2, T <1)- T(21> 
etc. all terms containing T2, T(21) etc. consistent with the expansion of [T+(A)]" 
and/or  [T(A)] m for suitable m and n, the Eqs. (16a) are identical to the Eqs. 
(16c). The system of equations corresponding to nth power of h obtained from 
(16a) would be identical to the system of equations corresponding to (n + 1)th 
power of 3. obtained from (16c). Diagrammatically also this can be easily 
visualised. Similarly, if we include T(z 2~ for calculation of second order properties 
consistent upto a given power of [T+(A)] and [T(A)] first three equations of 
(16a) corresponding to )t ~ A 1, A2 terms respectively will be identical to the first 
three equations generated from (16c) corresponding to A 1, A2 and X 3. These, in 
turn, will be identical to the first three equations of 

0E(X) 
0{(~/3 ] t~2)+ I pq)} = 0 (17) 

corresponding A 2, A 3, /~4 respectively. 

In the following the two relevant equations of (16a) and (16c) are shown to be 
same for first order properties by taking all the necessary terms involving only 
1"2, T~ t) obtained from the expansion of [T+(A)] and [T(A)] in the energy 
functional (14). 

Energy functional, in such a case, may be written as, 

E(A) = @olH[~o) + x (~I, o1 Ol,I,o) +@oI T;H]~o) + (~bolHT2lqbo) 

+ A (d9ol T~'>+HN~o ) + Z (qbo] HT~ 1)1~o) + Z @o] T20[~o) 
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+ a (qbo[ OT2l~o) + a 2(~bol T~ ') + O[O0) ^ + X 2(O010 T~'~IOo)A 

+(Ool T;HT2[Oo) + A (Ool T~-OT2IOo) + A ($o1T~')+HT21~o) 

+ AZ(Ool T(91)+(~T2]~o) + A(Oo] T-fHT~')[Oo) + A 2((I)ol T~OT~')IOo) 

Jr-,~ 2((ID0[ T(21)+HT(21)I~o) ..~_ ~ 3((I)0] T(21)+ 0T(2l)l(I)o)" 

All operator products are in normal order. Eqs. (16a) or (16c) would generate 
diagrams which have blocks with open 2 particle and 2 hole lines at the left of 
the block. The block is schematically depicted in Fig. 1. Under the approximation 
in which the functional (14) has been truncated to linear power in T+(A) and 
T(A), the two systems of equations generated from (16a) by differentiation of a 
T~ vertex corresponding to terms independent of A and linear in A may be 
written in diagrammatic language as, 

diagrams (having the shape of Fig. 1) generated from 

[H + HT2] = 0 (19a) 

diagrams (having the shape of Fig. 1) generated from 

[ O -{- O~"T2 + H-~(1 )] = 0. (19b) 

Symbol "-"' denotes the contraction between the operators which have been 
capped by this symbol. In a similar language Eq. (16c) may be written in the 
following as two relevant systems of Eqs. (20a) and (20b) which correspond to 
linear and quadratic terms in A respectively. 

Diagrams (having the shape of Fig. 1) generated from 

[H + HT2] = 0 (20a) 

Diagrams (having the shape of Fig. 1) generated from 

[O + O~"T2 + H--T~ 1)] = 0 (20b) 

Clearly the equations are identical, so that one may consider only one set of 
equations. 

When we write the equation (16a) corresponding to terms proportional to A 2 for 
determination of T~ 2~ matrix elements, we must also include the diagrams arising 

Fig. 1. Schematic depiction of the 
diagrams generated by the differentiation 
of the energy functional (14) with respect 
to a T~/T~ 1)§ etc. vertex. Hole lines are 
indicated by right going arrows and par- 
ticle lines are indicated by left going 
arrows 
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from contractions involving T~2 2) operators. From the discussions presented before 
it is clear that in such a two body approximation for the T (~ operators, for any 
order property calculation, only one set e.g. the set (16a) is sufficient to calculate 
all matrix elements. It is to be noted that the first system of equation in any set 
obtained from the stationarity condition of  the functional (qbolN[{ T+()t)}mH(h) 
{T2(A)}"]I~o)L with respect to variation of T (~ parameters is (for example, the 
equation for h-independent  term from (16a) or equation corresponding to linear 
terms in h from (16c) etc.) identical to the system of equations obtained by 
making the energy functional (~oIN[T-~mHT~][d~o)L stationary with respect to 
variation of  T-parameters in the correlation energy calculation of work related 
to the first citation of the Ref. [6]. 

In a similar spirit, operators of other n-body excitations (ranks) can be introduced 
into the calculation. As long as we include all the operators T ~~ upto the same 
rank we will continue to have a similar structure of identical equation. In such 
a case 

OE(A) 
OT~)-----v-0 i = 0 ,  1, 2 , . . .  (21) 

will produce identical system of equations for all i. Here i denotes the cluster 
parameter corresponding to )t i in the expansion (6). Here corresponding to i = 0, 
T~ ) is the T, parameter referred to earlier so that again the set of equations 
obtained by variation with respect to only T~ + parameters is sufficient for any n. 

4. Summary 

As we see the first equation in the system of equations obtained by making the 
functional (14) stationary with respect to variations of T (i) parameters for any i 
is identical to the stationary condition of  the functional (~oleT+HeTI~o)L with 
respect to the variation of T-parameters. But with the introduction of T (1) 
parameters, in case, e.g. of first order static properties, E (1) is quite different from 
the simple expectation value of the operator. In contrast with Monkhorst 's 
nonvariational approach, the functional is not a finite power series of T. But if 
dominant terms are taken into consideration, the effect of  truncation may not be 
serious. 
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